

Controversy: Should Molecular Imaging Fully Replace Conventional Imaging? (staging of intermediate and high-risk prostate cancer) Against

Evis Sala, MD, PhD, FRCR, FRCP

EANM Focus Meeting Disclosure Statement (COI)

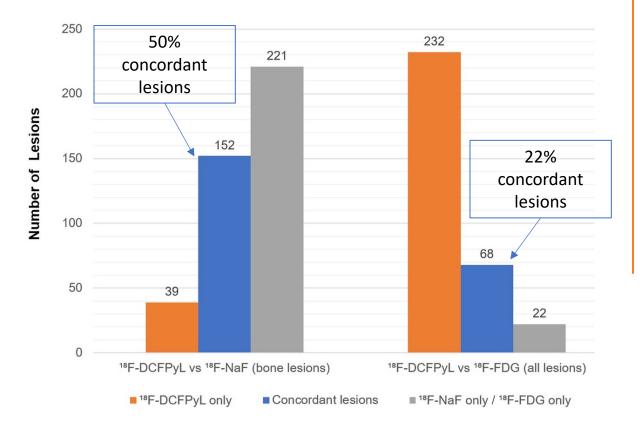
Type of affiliation / financial interest	Name of commercial company
Receipt of grants/research supports:	GE Healthcare
Receipt of honoraria or consultation fees:	GE Healthcare
Participation in a company sponsored speaker's bureau:	GE Healthcare, Canon
Co-founder and stock shareholder:	Lucida Medical

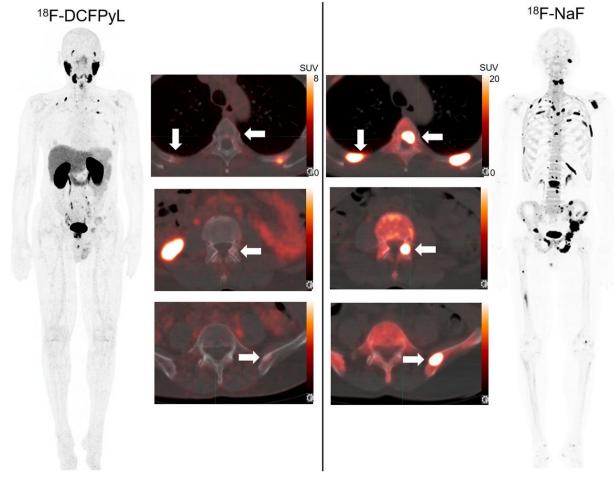
NGI for unfavorable intermediate and high-risk - limitations

Multiple NGI tracers: varying sensitivity even within the PSMA family (polymetastatic invisible disease concept)

False +ve lesions: non-malignant conditions, higher for PSMA-1007 tracer

False -ve disease: 5-10% of patients


Biases: Will-Rogers effect, stage migration, lead-time and length time bias


Outcome impacts: Do management impacts 'really' change net patient outcomes?

Changing metastasis numbers by PET tracer type

Highly unlikely that a single tracer will all lesions given the heterogenous nature of metastatic prostate cancer

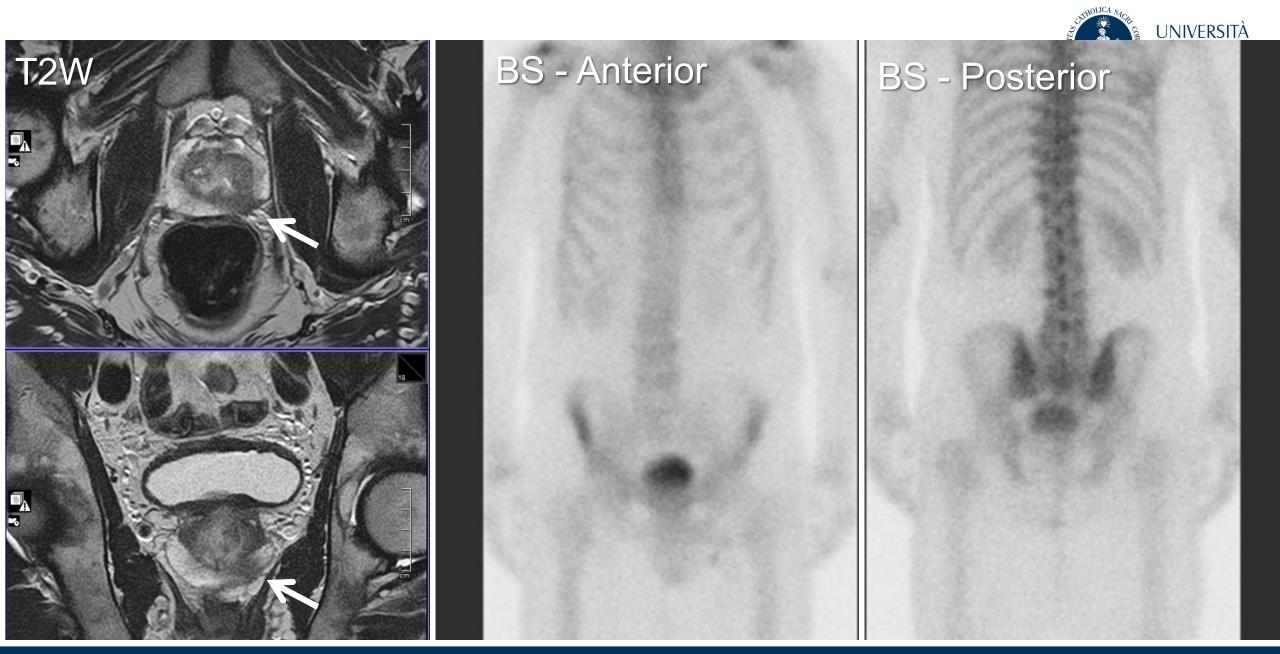
Multiple phenotypes of metastases exist even in the same person, especially in mCRPC

Fourquet A, et al. A Comparison of ¹⁸F-DCFPyL, ¹⁸F-NaF, and ¹⁸F-FDG PET/CT in a Prospective Cohort of Men with Metastatic Prostate Cancer. J Nucl Med. 2022

May;63(5):735-741.

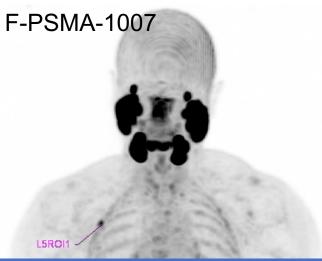
NGI for unfavorable intermediate and high-risk - limitations

Multiple NGI tracers: varying sensitivity even within the PSMA family (polymetastatic invisible disease concept)



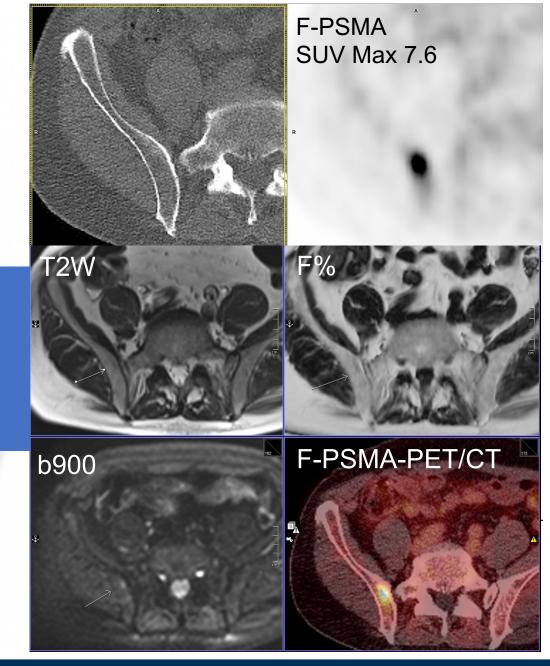
False +ve lesions: non-malignant conditions, higher for PSMA-1007 tracer

False -ve disease: 5-10% of patients

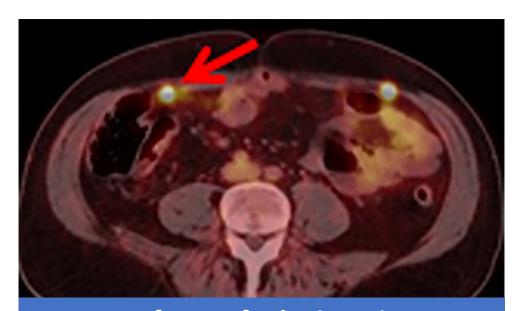

Biases: Will-Rogers effect, stage migration, lead-time and length time bias

Outcome impacts: Do management impacts 'really' change net patient outcomes?

72M PSA 7.2 ng/mL. GS 4+3 (GG3) adenocarcinoma. T3A – microscopic. Bone scan - negative.

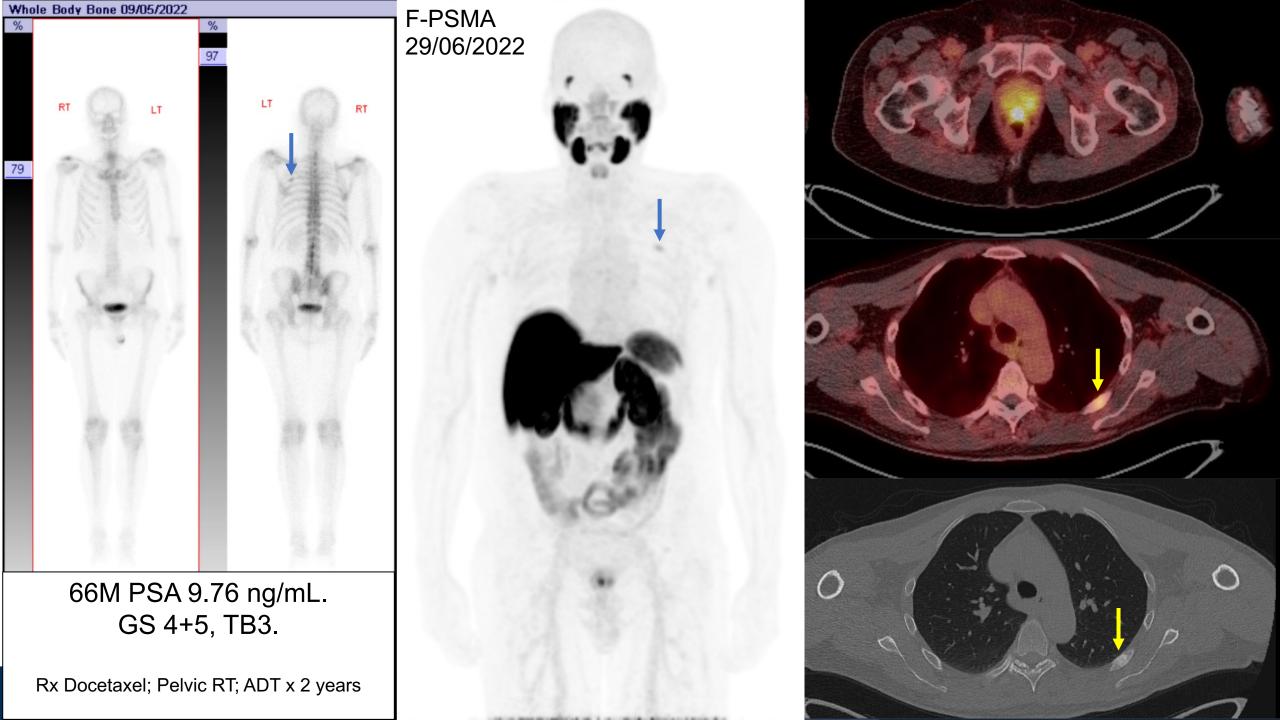


Multimodality or biopsy confirmation & MDT review are needed before Rx decisions



72M PSA 7.2 ng/mL. GS 4+3 (GG3) adenocarcinoma. T3A – microscopic. Bone scan - negative.

18F-DCFPyL PSMA-PET/CT for Initially Diagnosed and Biochemically Recurrent Prostate Cancer: Prospective Trial with Pathologic Confirmation



One of out of 4 lesions is not cancer in a biopsy proven study!

Fused DCFPyL PET/CT scan in a 72-year-old man shows biopsy-proven subcentimeter right anterior • abdominal wall metastasis (arrow).

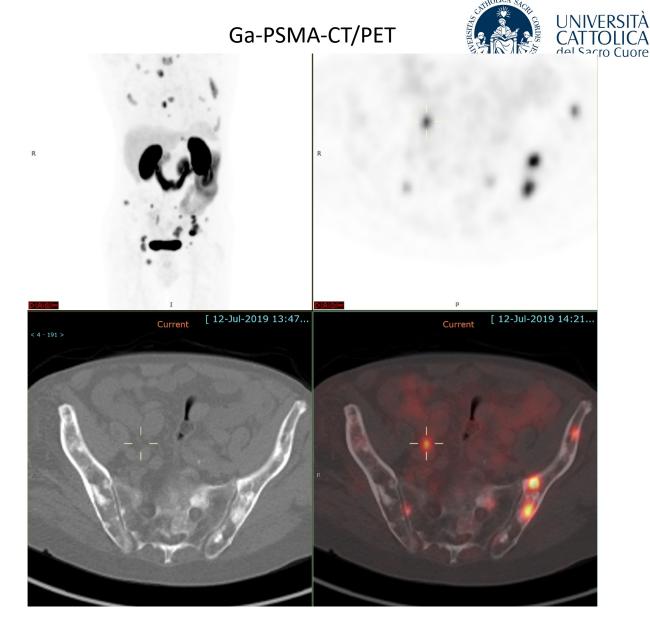
- In a prospective trial of DCFPyL in 184 patients with initially diagnosed and recurrent prostate cancer, 50 of 60 (83%) biopsied DCFPyL-avid lesions were malignant at biopsy.
- The biopsy-proven PPV of DCFPyL PSMA-PET/CT for distant metastases in newly diagnosed high-risk prostate cancer was 74% and that for sites of recurrence in men with biochemical recurrence was 89%.
- Solitary DCFPyL avidity in the ribs and pelvis locations should not be presumed as malignant; biopsy may be needed prior to therapy decisions.
- (Multimodality confirmation is an alternative)

NGI for unfavorable intermediate and high-risk - limitations

Multiple NGI tracers: varying sensitivity even within the PSMA family (polymetastatic invisible disease concept)

False +ve lesions: non-malignant conditions, higher for PSMA-1007 tracer

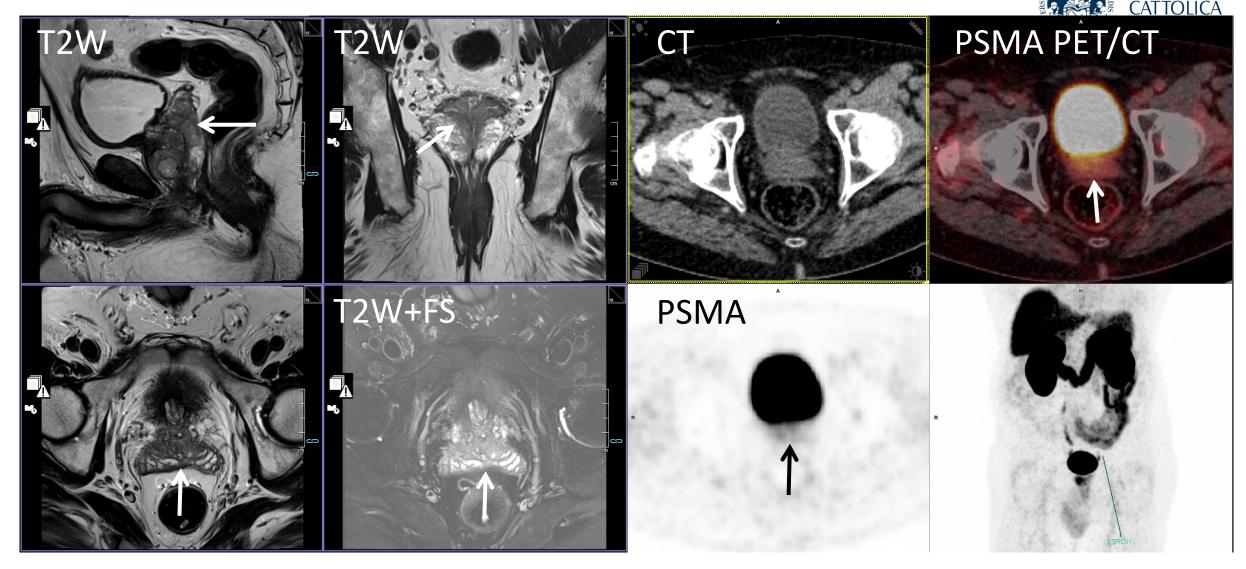
False -ve disease: 5-10% of patients


Biases: Will-Rogers effect, stage migration, lead-time and length time bias

Outcome impacts: Do management impacts 'really' change net patient outcomes?

What about false -ve?

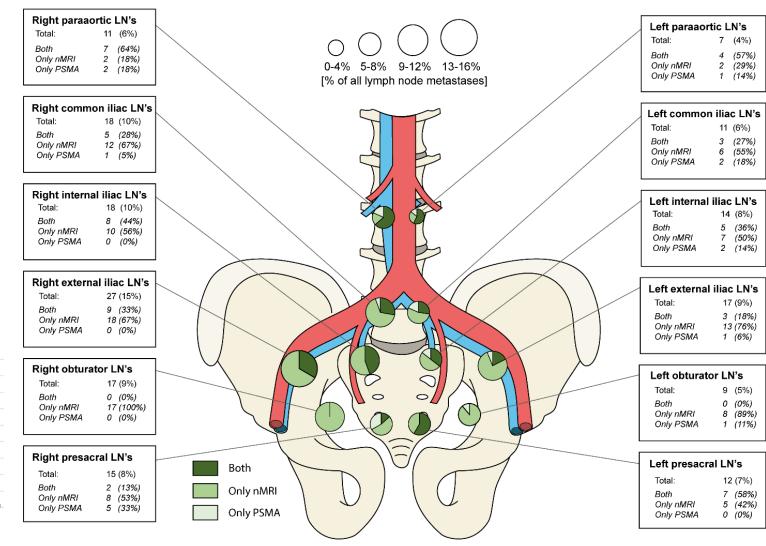
- 82M rising PSA on ADT.
- Even the CT scan shows more lesions than PSMA in this patient!
- The NM interpretation was that the PSMA 'unseen' lesions were 'inactive'!!!!

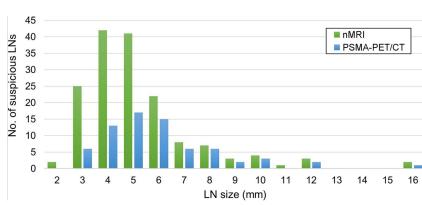


69M, PSA 10ng/mL, Asymptomatic, Routine check, DRE+ve PSMA PET/CT **PSMA**

Anterior biopsy: GS4+5, 70% GS=4; Diffuse pattern adenocarcinoma; No small cell neuroendocrine differentiation

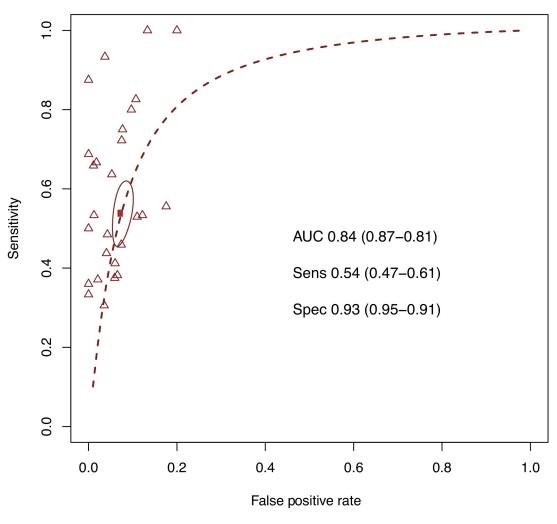
69M, PSA 10ng/mL, Asymptomatic, Routine check, DRE+ve


Base biopsy: GS4+5, 80% GS=4; Diffuse pattern adenocarcinoma; No small cell neuroendocrine differentiation


69M, PSA 10ng/mL, Asymptomatic, Routine check, DRE+ve PSMA PET/CT **PSMA** b900

Base biopsy: GS4+5, 80% GS=4; Diffuse pattern adenocarcinoma; No small cell neuroendocrine differentiation

Does PSMA see all nodal disease?


Detection rates of PSMA-PET/CT for nodal disease in surgical series

- Majority of small metastatic nodes are consistently missed
 - \leq 2 mm \rightarrow 0% detected

Are these µMa important?

- 2-4 mm \rightarrow 25% detected
- >5 mm \rightarrow 49-63%*
- Patient/template level sensitivity > node/station level sensitivity
- Lymph-nodal therapies benefits are greatest for men with smaller nodes

Bivariate SROC curve

Stabile A, et al. Can Negative PSMA PET/CT Avoid the Need for Pelvic Lymph Node Dissection in Newly Diagnosed Prostate Cancer Patients? A Systematic Review and Meta-analysis with Backup Histology as Reference Standard. Eur Urol Oncol. 2022 Feb;5(1):1-17.

^{*}Pouliot F, et al. A prospective phase II/III multi-center study of PSMA-targeted 18F-DCFPyL PET/CT imaging in patients with prostate cancer (OSPREY): a sub-analysis of regional and distant metastases detection rates at initial staging by 18F-DCFPyL PET/CT. J Clin Oncol 2020;38(6 Suppl):9.

Moderate rule-out ability of PSMA for nodal disease results in higher failure rates in PET-NO disease with prostate-only radiotherapy

High-risk and very high-risk, locally advanced, node negative PCa

- 224 men
- Very high-risk (NCCN) = 50%
- T3B/T4 = 48%
- 82% were node negative on PSMA-PET/CT

Randomized to prostate only or wholepelvic radiotherapy (prostate + pelvic nodes, including common iliac) + 2 yrs adjuvant ADT

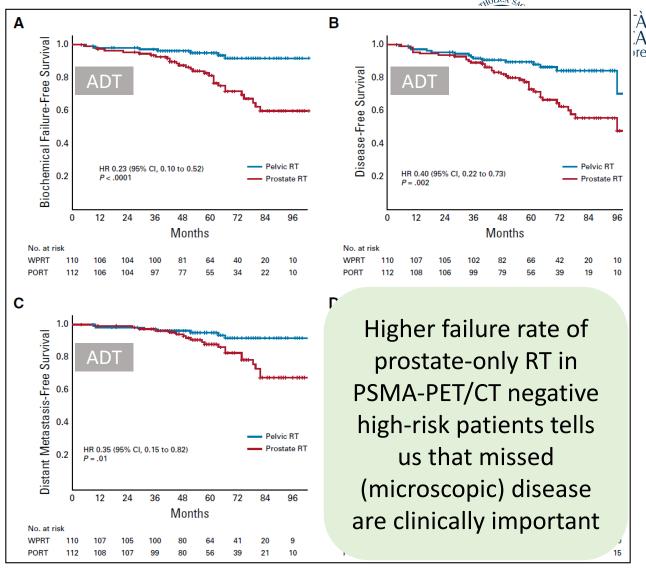


FIG 2. Kaplan-Meier estimates of biochemical failure-free survival (A), disease-free survival (B), distant metastasis-free survival (C), and overall survival (D). HR, hazard ratio; PORT, prostate-only radiotherapy; RT, radiotherapy; WPRT, whole-pelvic radiotherapy.

NGI for unfavorable intermediate and high-risk - limitations

Multiple NGI tracers: varying sensitivity even within the PSMA family (polymetastatic invisible disease concept)

False +ve lesions: non-malignant conditions, higher for PSMA-1007 tracer

False -ve disease: 5-10% of patients

Biases: Will-Rogers effect, stage migration, lead-time and length time bias

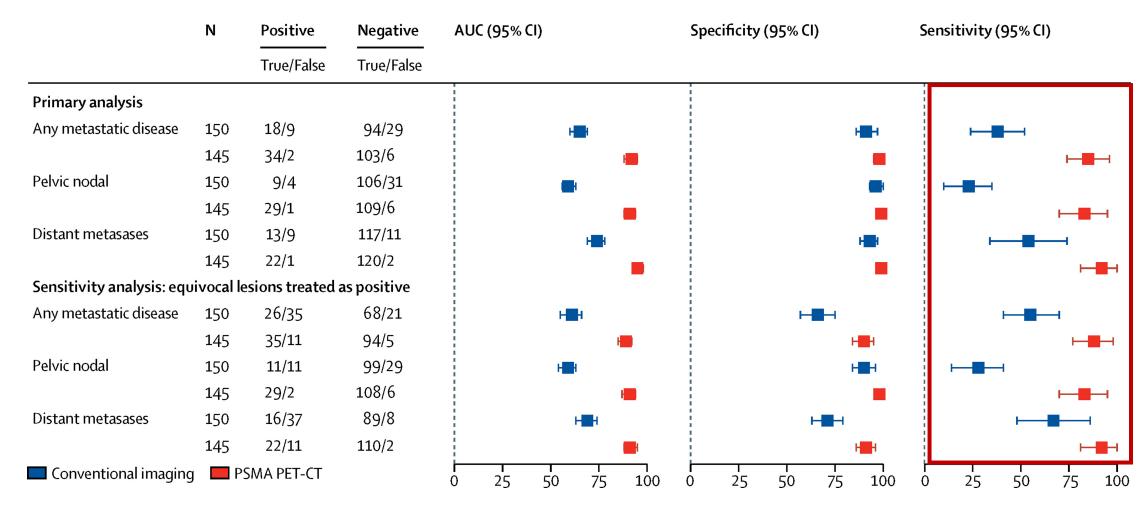
Outcome impacts: Do management impacts 'really' change net patient outcomes?

Improves detection (sensitivity): indolent (diagnosis), μM (staging) & μPD (therapy monitoring)

Improves lesion characterizations (specificity)

Survival biases of Next Generation Imaging

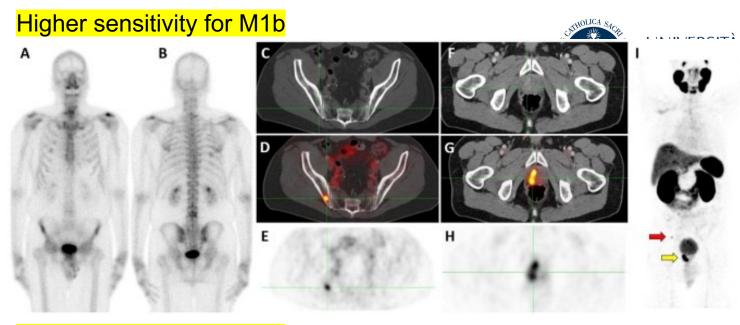
@ProfPadhani


Lead-time bias

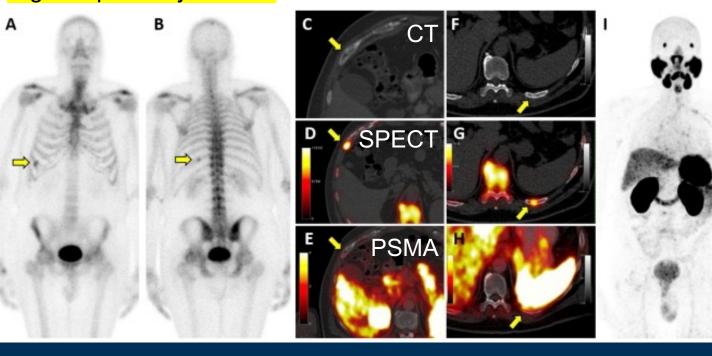
Will-Rogers effect Stage-migration

Length-time bias

Sensitivity improvements outweigh specificity for Ga-PSMA-PET/CT > CT/BS (SPECT)



Hofman MS, et al. PSMA PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA):


PSMA-PET/CT vs CI (Sensitivity>Specificity)

- Intermediate & high-risk staging (n=168; HR =74%)
- PSMA upstaging due to sensitivity (22%); downstaging due to specificity (7%)
- PSMA vs CI non-concordance
 ≈30% of patients; LN> M1b>
 M1c
- PSMA did not confirm 5/12 (42%) pts with suspicious M1b on CT/BS!

Lenis AT, et al. PSMA-PET/CT Compared with Conventional Imaging for Initial Staging of Treatment-naïve Intermediateand High-risk Prostate Cancer: A Retrospective Single-center Study. Eur Urol Oncol. 2022 Oct;5(5):544-552.

Higher specificity for M1b

NGI for unfavorable intermediate and high-risk - limitations

Multiple NGI tracers: varying sensitivity even within the PSMA family (polymetastatic invisible disease concept)

False +ve lesions: non-malignant conditions, higher for PSMA-1007 tracer

False -ve disease: 5-10% of patients

Biases: Will-Rogers effect, stage migration, lead-time and length time bias

Outcome impacts: Do management impacts 'really' change net patient outcomes?

European Urology

Available online 31 January 2022

In Press, Corrected Proof ?

Platinum Opinion

Modern Imaging in Prostate Cancer: Do We Treat Patients, or Their Scans?

Malcolm D. Mason ^a [△] [⋈], Theodorus H. van der Kwast ^b, Nicolas Mottet ^c, Daniela E. Oprea-Lager ^d, Olivier Rouvière e, f, EAU-EANM-ESTRO-ESUR-ISUP-SIOG Prostate Cancer Guidelines Panel †

Platinum Opinion

When What You See Is Not Always What You Get: Raising the of Evidence for New Diagnostic Imaging Modalities

Nora Sundahl a,b,*, Silke Gillessen c,d,ef, Christopher Sweeney g,h, Piet Ost a

Journal of Clinical Oncology®

?SITÀ

An American Society of Clinical Oncology Journal

COMMENTS AND CONTROVERSIES

Newly Diagnosed High-Risk Prostate Cancer in an Era of Rapidly Evolving New Imaging: How Do We Treat?

Maha Hussain . MD1 : Daniel Lin . MD2: Fred Saad . MD3: Neha Vapiwala. MD4; Brian Francis Chapin, MD5; Howard Sandler , MD, MS6; ...

COMMENTS AND CONTROVERSIES

Strategies for Evaluation of Novel Imaging in Prostate Cancer: Putting the Horse Back Before the Cart

Neha Vapiwala, MD¹ Michael S. Hofman, MBBS^{2,3}; Declan G. Murphy, MB^{2,3}; Scott Williams, MD^{2,3}; and Christopher Sweeney, MBBS⁴

Show More

Evolving Role of Prostate-Specific Membrane Antigen-Positron Emission Tomography in Metastatic Hormone-Sensitive Prostate Cancer: More Questions than Answers?

Maha Hussain, MD1; Michael A. Carducci, MD2; Noel Clarke, MBBS3; Sarah E. Fenton, MD, PhD1; Karim Fizazi, MD, PhD4; Silke Gillessen, MD, PhD^{5,6,7}; Heather Jacene, MD⁸; Michael J. Morris, MD⁹; Fred Saad, MD¹⁰; Oliver Sartor, MD¹¹; Mary-Ellen Taplin, MD12; Neha Vapiwala, MD13; Scott Williams, MD14; and Christopher Sweeney, MD12

^a Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium; ^b Division of Radiotherapy and Imaging, Institute of Cancer R London, UK; ^c Oncology Institute of Southern Switzerland, Bellinzona, Switzerland; ^d Universita della Svizzera Italiana, Lugano, Switzerland; ^e Universita della Svizzera Italiana, Lugano, Switzera It Bern, Bern, Switzerland; ^f Division of Cancer Science, University of Manchester, Manchester, UK; ^g Dana-Farber Cancer Institute, Boston, MA, USA; ^h E and Women's Hospital, Harvard Medical School, Boston, MA, USA

European Urology

Available online 31 January 2022
In Press, Corrected Proof (?)

Platinum Opinion

Modern Imaging in Prostate Cancer: Do We Treat Patients, or Their Scans?

Malcolm D. Mason ^a △ , Theodorus H. van der Kwast ^b, Nicolas Mottet ^c, Daniela E. Oprea-Lager ^d, Olivier Rouvière ^{e, f}, EAU-EANM-ESTRO-ESUR-ISUP-SIOG Prostate Cancer Guidelines Panel [†]

Platinum Opinion

When What You See Is Not Always What You Get: Raising the of Evidence for New Diagnostic Imaging Modalities

Nora Sundahl a,b,*, Silke Gillessen c,d,ef, Christopher Sweeney g,h, Piet Ost a

Clinical view \rightarrow show net outcomes impacts:

"The value of novel imaging comes when it is shown that NGI helps maximize Rx benefits, minimize undertreatments, reduce or prevents overtreatments while tempering toxicity & costs"

Hussain M, et al.

Journal of Clinical Oncology®

RSITÀ LICA Cuore

An American Society of Clinical Oncology Journal

COMMENTS AND CONTROVERSIES

Newly Diagnosed High-Risk Prostate Cancer in an Era of Rapidly Evolving New Imaging: How Do We Treat?

Maha Hussain , MD¹ , Daniel Lin , MD²; Fred Saad , MD³; Neha Vapiwala, MD⁴; Brian Francis Chapin, MD⁵; Howard Sandler , MD, MS⁶; ...

COMMENTS AND CONTROVERSIES

Strategies for Evaluation of Novel Imaging in Prostate Cancer: Putting the Horse Back Before the Cart

Neha Vapiwala, MD¹ Michael S. Hofman, MBBS^{2,3}; Declan G. Murphy, MB^{2,3}; Scott Williams, MD^{2,3}; and Christopher Sweeney, MBBS⁴

Show More

Evolving Role of Prostate-Specific

Membrane Antigen-Positron Emission

Tomography in Metastatic Hormone-Sensitive

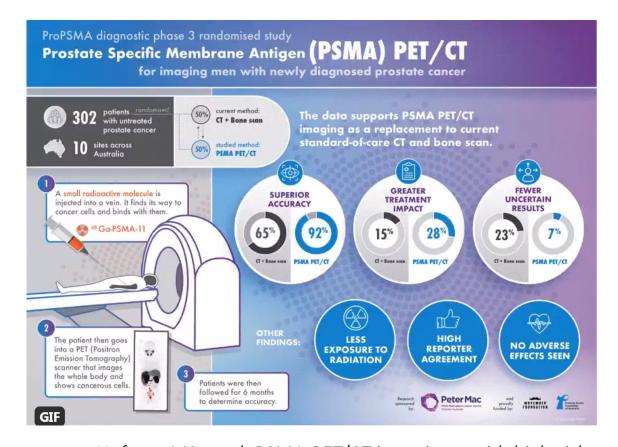
Prostate Cancer: More Questions than Answers?

Maha Hussain, MD¹; Michael A. Carducci, MD²; Noel Clarke, MBBS³; Sarah E. Fenton, MD, PhD¹; Karim Fizazi, MD, PhD⁴; Silke Gillessen, MD, PhD⁵,6.7; Heather Jacene, MD®; Michael J. Morris, MD⁰; Fred Saad, MD¹⁰; Oliver Sartor, MD¹¹; Mary-Ellen Taplin, MD¹²; Neha Vapiwala, MD¹³; Scott Williams, MD¹⁴; and Christopher Sweeney, MD¹²

^aDepartment of Radiation Oncology, Ghent University Hospital, Ghent, Belgium; ^bDivision of Radiotherapy and Imaging, Institute of Cancer R London, UK; ^cOncology Institute of Southern Switzerland, Bellinzona, Switzerland; ^dUniversita della Svizzera Italiana, Lugano, Switzerland; ^eUniversity, Bern, Bern, Switzerland; ^fDivision of Cancer Science, University of Manchester, Manchester, UK; ^gDana-Farber Cancer Institute, Boston, MA, USA; ^hE and Women's Hospital, Harvard Medical School, Boston, MA, USA

PSMA-PET/CT compared with BS/CT scans

- Unfavourable intermediate and high-risk localised disease, PSMA-PET/CT compared to CT/BS
 - 87/150 (30%) patients had confirmed pelvic nodal or distant metastatic disease


#ProPSMA randomised study online in @thelancet:

PSMA PET/CT can replace CT/bone scans in men with aggressive prostate ca:

- **✓** Accuracy 92% v 65%
- ✓ Management impact 28% v15%
- ✓ Uncertain findings 7% v 23%
- ✓ Radiation dose 8 v 19mSv

bit.ly/propsma @gu_onc @pcfa @movember

Hofman MS, et al. PSMA-PET/CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study.

Lancet. 2020 Apr 11;395(10231):1208-1216

How often does low-volume disease on BS become high-volume on PSMA-PET/CT?

- 79 men with EAU high-risk (prevalence of bone disease 21%)
- Head-to-head study of BS (± SPECT) vs F-PSMA-PET/CT
 - DCFPyL (51%); PSMA-1007 (39%) and PSMA-7 (10%)
- Change in risk group in 15/79
- Treatment changes occurred in almost 20% of cases

		F-PSMA			
		M0	LVD	HVD*	
	M0	60	7	5	70
CT chaarted risk criteria for mHSPC	LVD	2	3	4	9
	HVD	-	-	-	-

Bodar YJL, et al. A prospective, multicenter head-to-head comparative study in patients with primary high-risk prostate cancer investigating the bone lesion detection of conventional imaging and ¹⁸F-PSMA-PET/CT. Urol Oncol. 2022 PMID: 36588019.

Do management changes after PSMA-PET/CT alter the patient outcomes (risk-benefit ratio) in high-risk localized/locally advanced prostate cancer?

Literature suggests the escalation use of PSMA-PET/CT in LAPC

Practice often shows the de-escalation use of PSMA-PET/CT in BCR

Limited list of ongoing randomized studies:

- PRISMA-PET Primary Staging of Prostate Cancer: a Randomized Controlled Trial Comparing 18F-PSMA-1007 PET/CT to Conventional Imaging. NCT05123300
- PSMA PET/CT guided intensification of therapy in patients at risk of advanced prostate cancer (PATRON): a pragmatic phase III randomized controlled trial (CT/BS vs CT/BS/PSMA). NCT04557501
- PEARLS: A Multicenter Phase II/III Trial of Extended Field Radiotherapy for Androgen Sensitive Prostate Cancer Patients with PSMA-avid Pelvic and Para-Aortic Lymph Nodes at Presentation. ISRCTN36344989.

High-risk prostate cancer imaging & Rx recommendations

UNIVERSITÀ CAT TOLICA del Sacro Cuore

- Perform both conventional imaging (BS/CT) and PSMA-PET/CT
 - CT component of PET/CT is often sufficient
 - BS contribution is often minimal
- Primary tumor Rx clinical decision is based on conventional imaging findings
- High specificity of PSMA means that N1/M1 disease should be trusted
 - Treatment intensifications
 - Adjuvant phase of Rx

Hussain M, et al. Evolving Role of PSMA-PET/CT in Metastatic Hormone-Sensitive Prostate Cancer: More Questions than Answers?

J Clin Oncol. 2022 2022 Sep 10;40(26):3011-3014.

	nging dings		ecommendations for	
CIM	PSMA	newly diagnosed high-risk disease		
-	-	Standard of care (SOC) of localised PCa		
	- +	Pelvic PMA LN+: SOC of prostate cancer and regional LN+		
-		Beyond pelvic nodes1. Prioritise clinical trials2. Manage as high-risk with local and adjuvant metastatic therapy		
		Pelvis LN+ on CIM	SOC of prostate cancer and regional LN+	
+ ±	Pelvis LN on CIM & PSMA	SOC of prostate cancer and regional LN+		
	CIM+ for M1	SOC for mHSPC by M1 disease state		

NGI in CT/BS-M0 unfavourable & high-risk localized

NGI (P nodes

• Do n

NGI in abirate

- If NG alone
- If NC cons

Manag need t

Delivering a New Paradigm for Personalised Medicine

Special thanks to:

- ✓ Anwar Padhani
- ✓ Salvatore Annunziata
- ✓ Daniele Pizzuto

CAMBRIDGE CENTRE

UNIVERSITÀ CATTOLICA del Sacro Cuore coulden oguz mithat andikyan szardino s

Gemelli

